Existence and uniqueness of solutions for a degenerate quasilinear parabolic problem
نویسندگان
چکیده
منابع مشابه
Existence and uniqueness of solutions for a periodic boundary value problem
In this paper, using the fixed point theory in cone metric spaces, we prove the existence of a unique solution to a first-order ordinary differential equation with periodic boundary conditions in Banach spaces admitting the existence of a lower solution.
متن کاملExistence of Solutions and L∞–bounds for Quasilinear Degenerate Parabolic Systems
Existence of weak solutions for systems of quasilinear degenerate parabolic equations with non-diagonal main part and nonlinear boundary conditions is proved. Under some restrictions we find also L∞ bounds for the solutions.
متن کاملExistence and Uniqueness of Solutions for Quasilinear Elliptic Systems
We obtain necessary and sufficient conditions for the existence of positive solutions for a class of sublinear Dirichlet quasilinear elliptic systems.
متن کاملQuasilinear Parabolic Stochastic Partial Differential Equations: Existence, Uniqueness
In this paper, we provide a direct approach to the existence and uniqueness of strong (in the probabilistic sense) and weak (in the PDE sense) solutions to quasilinear stochastic partial differential equations, which are neither monotone nor locally monotone.
متن کاملExistence of solutions for quasilinear degenerate elliptic equations ∗
In this paper, we study the existence of solutions for quasilinear degenerate elliptic equations of the form A(u) + g(x, u,∇u) = h, where A is a Leray-Lions operator from W 1,p 0 (Ω, w) to its dual. On the nonlinear term g(x, s, ξ), we assume growth conditions on ξ, not on s, and a sign condition on s.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publicacions Matemàtiques
سال: 1994
ISSN: 0214-1493
DOI: 10.5565/publmat_38294_05